The specificity of stimulus-specific adaptation in human auditory cortex increases with repeated exposure to the adapting stimulus

Author:

Briley Paul M.12,Krumbholz Katrin1

Affiliation:

1. Medical Research Council Institute of Hearing Research, University Park, Nottingham, United Kingdom; and

2. Department of Psychology, University of York, York, United Kingdom

Abstract

The neural response to a sensory stimulus tends to be more strongly reduced when the stimulus is preceded by the same, rather than a different, stimulus. This stimulus-specific adaptation (SSA) is ubiquitous across the senses. In hearing, SSA has been suggested to play a role in change detection as indexed by the mismatch negativity. This study sought to test whether SSA, measured in human auditory cortex, is caused by neural fatigue (reduction in neural responsiveness) or by sharpening of neural tuning to the adapting stimulus. For that, we measured event-related cortical potentials to pairs of pure tones with varying frequency separation and stimulus onset asynchrony (SOA). This enabled us to examine the relationship between the degree of specificity of adaptation as a function of frequency separation and the rate of decay of adaptation with increasing SOA. Using simulations of tonotopic neuron populations, we demonstrate that the fatigue model predicts independence of adaptation specificity and decay rate, whereas the sharpening model predicts interdependence. The data showed independence and thus supported the fatigue model. In a second experiment, we measured adaptation specificity after multiple presentations of the adapting stimulus. The multiple adapters produced more adaptation overall, but the effect was more specific to the adapting frequency. Within the context of the fatigue model, the observed increase in adaptation specificity could be explained by assuming a 2.5-fold increase in neural frequency selectivity. We discuss possible bottom-up and top-down mechanisms of this effect.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3