Affiliation:
1. Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Internal Medicine, and
2. Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, Texas;
3. Department of Environmental, Agricultural, & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha;
4. Research Service, Omaha-Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska
Abstract
Mucociliary clearance, vital to lung clearance, is dependent on cilia beat frequency (CBF), coordination of cilia, and the maintenance of periciliary fluid. Adenosine, the metabolic breakdown product of ATP, is an important modulator of ciliary motility. However, the contributions of specific adenosine receptors to key airway ciliary motility processes are unclear. We hypothesized that adenosine modulates ciliary motility via activation of its cell surface receptors (A1, A2A, A2B, or A3). To test this hypothesis, mouse tracheal rings (MTRs) excised from wild-type and adenosine receptor knockout mice (A1, A2A, A2B, or A3, respectively), and bovine ciliated bronchial epithelial cells (BBECs) were stimulated with known cilia activators, isoproterenol (ISO; 10 μM) and/or procaterol (10 μM), in the presence or absence of 5′-(N-ethylcarboxamido) adenosine (NECA), a nonselective adenosine receptor agonist [100 nM (A1, A2A, A3); 10 μM (A2B)], and CBF was measured. Cells and MTRs were also stimulated with NECA (100 nM or 10 μM) in the presence and absence of adenosine deaminase inhibitor, erythro-9- (2-hydroxy-3-nonyl) adenine hydrochloride (10 μM). Both ISO and procaterol stimulated CBF in untreated cells and/or MTRs from both wild-type and adenosine knockout mice by ∼3 Hz. Likewise, CBF significantly increased ∼2–3 Hz in BBECs and wild-type MTRs stimulated with NECA. MTRs from A1, A2A, and A3knockout mice stimulated with NECA also demonstrated an increase in CBF. However, NECA failed to stimulate CBF in MTRs from A2Bknockout mice. To confirm the mechanism by which adenosine modulates CBF, protein kinase activity assays were conducted. The data revealed that NECA-stimulated CBF is mediated by the activation of cAMP-dependent PKA. Collectively, these data indicate that purinergic stimulation of CBF requires A2Badenosine receptor activation, likely via a PKA-dependent pathway.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献