Ozone modulates IL-6 secretion in human airway epithelial and smooth muscle cells

Author:

Damera Gautam,Zhao Hengjiang,Wang Miao,Smith Michael,Kirby Christopher,Jester William F.,Lawson John A.,Panettieri Reynold A.

Abstract

Although ozone enhances leukocyte function and recruitment in airways, the direct effect of ozone in modulating structural cell-derived inflammatory mediators remains unknown. Using a coculture model comprised of differentiated human airway epithelial cells (NHBE) and smooth muscle cells (ASM), we postulate that ozone regulates IL-6 secretion in basal and cytokine-primed structural cells. Air-liquid interface (ALI) cultures of NHBE cells underwent differentiation as determined by mucin secretion, transepithelial electrical resistance (TEER), and ultrastructure parameters. Whereas TNF enhanced basal secretion of IL-6 (57 ± 3%), ozone exposure at 0.6 ppm for 6 h augmented IL-6 levels in basal (41 ± 3%) and TNF- (50 ± 5%) primed cocultures compared with that derived from NHBE or ASM monolayers alone. Levels of PGE2, 6-keto-PGF, PGF, and thromboxane B2 (TxB2) levels in basal and TNF-primed cocultures revealed that ozone selectively enhanced PGE2 production in TNF- (6 ± 3-fold) primed cocultures, with little effect ( P > 0.05) on diluent-treated cultures. In accordance with ozone-induced increases in PGE2 levels, cyclooxygenase inhibition with indomethacin partially abolished IL-6 secretion. Surprisingly, indomethacin had little effect on constitutive secretion of IL-6 in cocultures, whereas indomethacin completely restored ozone-mediated TEER reduction in TNF-primed cocultures. Collectively, our data for the first time suggest a dual role of ozone in modulating IL-6 secretion and TEER outcomes in a PGE2-dependent (in presence of TNF stimulus) and -independent manner (in absence of cytokine stimulus).

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3