The bitter taste receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the guinea pig trachea

Author:

Pulkkinen Ville12,Manson Martijn L.1,Säfholm Jesper1,Adner Mikael1,Dahlén Sven-Erik1

Affiliation:

1. The Unit for Asthma and Allergy Research, the National Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden;

2. Research Programs Unit, Department of Medical Genetics, University of Helsinki, Finland

Abstract

Activation of taste receptors (TAS2Rs) by bitter taste agonists has been reported to cause bronchodilation. The aim of this study was to extend the information on the effects of bitter taste agonists on responses induced by different contractile mediators in a standard airway physiology preparation. Isometric responses were assessed in guinea pig trachea (GPT). TAS2R agonists were administered either to segments precontracted with different agonists for contraction or given before challenge with the different contractile stimuli, including antigen in tissues from ovalbumin-sensitized animals. TAS2R mRNA expression on GPT epithelium and smooth muscle was measured with real-time PCR. Denatonium, chloroquine, thiamine, and noscapine induced concentration-dependent relaxations (Rmax: 98.3 ± 1.6, 100.0 ± 0.0, 100.0 ± 0.0, and 52.3 ± 1.1% of maximum, respectively, in the presence of indomethacin) in segments precontracted with carbachol. The receptors for denatonium (TAS2R4, TAS2R10) and chloroquine (TAS2R3, TAS2R10) were expressed in GPT. Whereas denatonium selectively inhibited contractions induced by carbachol, chloroquine uniformly inhibited contractions evoked by prostaglandin E2, the thromboxane receptor agonist U-46619, leukotriene D4, histamine, and antigen. The effects of denatonium, but not those of chloroquine, were partly inhibited by blockers of the large Ca2+-activated K+ channels and decreased by an increase of the level of precontraction. In conclusion, TAS2R agonists mediated strong relaxations and substantial inhibition of contractions in GPT. Chloroquine and denatonium had distinct patterns of activity, indicating different signaling mechanisms. The findings reinforce the hypothesis that TAS2Rs are potential targets for the development of a new class of more efficacious agonists for bronchodilation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3