Mechanisms of alveolar protein clearance in the intact lung

Author:

Hastings Randolph H.,Folkesson Hans G.,Matthay Michael A.

Abstract

Transport of protein across the alveolar epithelial barrier is a critical process in recovery from pulmonary edema and is also important in maintaining the alveolar milieu in the normal healthy lung. Various mechanisms have been proposed for clearing alveolar protein, including transport by the mucociliary escalator, intra-alveolar degradation, or phagocytosis by macrophages. However, the most likely processes are endocytosis across the alveolar epithelium, known as transcytosis, or paracellular diffusion through the epithelial barrier. This article focuses on protein transport studies that evaluate these two potential mechanisms in whole lung or animal preparations. When protein concentrations in the air spaces are low, e.g., albumin concentrations <0.5 g/100 ml, protein transport demonstrates saturation kinetics, temperature dependence indicating high energy requirements, and sensitivity to pharmacological agents that affect endocytosis. At higher concentrations, the protein clearance rate is proportional to protein concentration without signs of saturation, inversely related to protein size, and insensitive to endocytosis inhibition. Temperature dependence suggests a passive process. Based on these findings, alveolar albumin clearance occurs by receptor-mediated transcytosis at low protein concentrations but proceeds by passive paracellular mechanisms at higher concentrations. Because protein concentrations in pulmonary edema fluid are high, albumin concentrations of 5 g/100 ml or more, clearance of alveolar protein occurs by paracellular pathways in the setting of pulmonary edema. Transcytosis may be important in regulating the alveolar milieu under nonpathological circumstances. Alveolar degradation may become important in long-term protein clearance, clearance of insoluble proteins, or under pathological conditions such as immune reactions or acute lung injury.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3