Aging causes a slowing in ciliary beat frequency, mediated by PKCε

Author:

Bailey K. L.12,Bonasera S. J.3,Wilderdyke M.2,Hanisch B. W.2,Pavlik J. A.2,DeVasure J.2,Robinson J. E.2,Sisson J. H.2,Wyatt T. A.124

Affiliation:

1. VA Nebraska-Western Iowa Health Care System, Research Service, Omaha, Nebraska;

2. Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;

3. Division of Geriatrics, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; and

4. Department of Environmental, Agricultural, & Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska

Abstract

The elderly are at much higher risk for developing pneumonia than younger individuals. Pneumonia is a leading cause of death and is the third most common reason for hospitalization in the elderly. One reason that elderly people may be more susceptible to pneumonia is a breakdown in the lung's first line of defense, mucociliary clearance. Cilia beat in a coordinated manner to propel out invading microorganisms and particles. Ciliary beat frequency (CBF) is known to slow with aging, however, little is known about the mechanism(s) involved. We compared the CBF in BALB/c and C57BL/6 mice aged 2, 12, and 24 mo and found that CBF diminishes with age. Cilia in the mice at age 12 and 24 mo retained their ability to be stimulated by the β2 agonist procaterol. To help determine the mechanism of ciliary slowing, we measured protein kinase C alpha and epsilon (PKCα and PKCε) activity. There were no activity differences in PKCα between the mice aged 2, 12, or 24 mo. However, we demonstrated a significantly higher PKCε activity in the mice at 12 and 24 mo than the in the mice 2 mo of age. The increase in activity is likely due to a nearly threefold increase in PKCε protein in the lung during aging. To strengthen the connection between activation of PKCε and ciliary slowing, we treated tracheas of mice at 2 mo with the PKCε agonist 8-[2-(2-pentylcyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA). We noted a similar decrease in baseline CBF, and the cilia remained sensitive to stimulation with β2 agonists. The mechanisms for the slowing of baseline CBF have not been previously determined. In this mouse model of aging we were able to show that decreases in CBF are related to an increase in PKCε activity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3