Author:
Fang Xiaohui,Song Yuanlin,Hirsch Jan,Galietta Luis J. V.,Pedemonte Nicoletta,Zemans Rachel L.,Dolganov Gregory,Verkman A. S.,Matthay Michael A.
Abstract
Previous studies in intact lung suggest that CFTR may play a role in cAMP-regulated fluid transport from the distal air spaces of the lung. However, the potential contribution of different epithelial cells (alveolar epithelial type I, type II, or bronchial epithelial cells) to CFTR-regulated fluid transport is unknown. In this study we determined whether the CFTR gene is expressed in human lung alveolar epithelial type II (AT II) cells and whether the CFTR chloride channel contributes to cAMP-regulated fluid transport in cultured human AT II cells. Human AT II cells were isolated and cultured on collagen I-coated Transwell membranes for 120–144 h with an air-liquid interface. The cultured cells retained typical AT II-like features based on morphologic studies. Net basal fluid transport was 0.9 ± 0.1 μl·cm−2·h−1and increased to 1.35 ± 0.11 μl·cm−2·h−1(mean ± SE, n = 18, P < 0.05) by stimulation with cAMP agonists. The CFTR inhibitor, CFTRinh-172, inhibited cAMP stimulated but not basal fluid transport. In short-circuit current ( Isc) studies with an apical-to-basolateral transepithelial Cl−gradient, apical application of CFTRinh-172 reversed the forskolin-induced decrease in Isc. Real time RT-PCR demonstrated CFTR transcript expression in human AT II cells at a level similar to that in airway epithelial cells. We conclude that CFTR is expressed in cultured human AT II cells and may contribute to cAMP-regulated apical-basolateral fluid transport.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
140 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献