A peptide derived from chaperonin 60.1, IRL201104, inhibits LPS-induced acute lung inflammation

Author:

Man Francis1ORCID,Nadkarni Suchita2,Kanabar Varsha1,e-Lacerda Rodrigo R.1,Gomes Ferreira Sueli1,Federici Canova Donata2,Perretti Mauro2,Page Clive P.1,Riffo-Vasquez Yanira1ORCID

Affiliation:

1. Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom

2. William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom

Abstract

Chaperonin 60.1 (Cpn60.1) is a protein derived from Mycobacterium tuberculosis that has been shown, along with its peptide fragment IRL201104, to have beneficial effects in models of allergic inflammation. To further investigate the anti-inflammatory properties of Cpn60.1 and IRL201104, we have investigated these molecules in a model of nonallergic lung inflammation. Mice were treated with Cpn60.1 (0.5–5,000 ng/kg) or IRL201104 (0.00025–2.5 ng/kg), immediately before intranasal instillation of bacterial lipopolysaccharide (LPS). Cytokine levels and cell numbers in mouse bronchoalveolar lavage (BAL) fluid were measured 4 h after LPS administration. In some experiments, mice were depleted of lung-resident phagocytes. Cells from BAL fluid were analyzed for inflammasome function. Human umbilical vein endothelial cells (HUVECs) were analyzed for adhesion molecule expression. Human neutrophils were analyzed for integrin expression, chemotaxis, and cell polarization. Cpn60.1 and IRL201104 significantly inhibited neutrophil migration into the airways, independently of route of administration. This effect of the peptide was absent in TLR4 and annexin A1 knockout mice. Intravital microscopy revealed that IRL201104 reduced leukocyte adhesion and migration into inflamed tissues. However, IRL201104 did not significantly affect adhesion molecule expression in HUVECs or integrin expression, chemotaxis, or polarization of human neutrophils at the studied concentrations. In phagocyte-depleted animals, the anti-inflammatory effect of IRL201104 was not significant. IRL201104 significantly reduced IL-1β and NLRP3 expression and increased A20 expression in BAL cells. This study shows that Cpn60.1 and IRL201104 potently inhibit LPS-induced neutrophil infiltration in mouse lungs by a mechanism dependent on tissue-resident phagocytes and to a much lesser extent, the proresolving factor annexin A1.

Funder

Revolo Biotherapeutics Ltd.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3