Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome

Author:

Bastarache Julie A.1,Fremont Richard D.1,Kropski Jonathan A.1,Bossert Frederick R.1,Ware Lorraine B.1

Affiliation:

1. Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee

Abstract

Coagulation and fibrinolysis abnormalities are observed in acute lung injury (ALI) in both human disease and animal models and may contribute to ongoing inflammation in the lung. Tissue factor (TF), the main initiator of the coagulation cascade, is upregulated in the lungs of patients with ALI/acute respiratory distress syndrome (ARDS) and likely contributes to fibrin deposition in the air space. The mechanisms that govern TF upregulation and activation in the lung are not well understood. In the vascular space, TF-bearing microparticles (MPs) are central to clot formation and propagation. We hypothesized that TF-bearing MPs in the lungs of patients with ARDS contribute to the procoagulant phenotype in the air space during acute injury and that the alveolar epithelium is one potential source of TF MPs. We studied pulmonary edema fluid collected from patients with ARDS compared with a control group of patients with hydrostatic pulmonary edema. Patients with ARDS have higher concentrations of MPs in the lung compared with patients with hydrostatic edema (25.5 IQR 21.3–46.9 vs. 7.8 IQR 2.3–27.5 μmol/l, P = 0.009 by Mann-Whitney U-test). These MPs are enriched for TF, have procoagulant activity, and likely originate from the alveolar epithelium [as measured by elevated levels of RAGE (receptor for advanced glycation end products) in ARDS MPs compared with hydrostatic MPs]. Furthermore, alveolar epithelial cells in culture release procoagulant TF MPs in response to a proinflammatory stimulus. These findings suggest that alveolar epithelial-derived MPs are one potential source of TF procoagulant activity in the air space in ARDS and that epithelial MP formation and release may represent a unique therapeutic target in ARDS.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3