Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation

Author:

Lisberger S. G.,Fuchs A. F.

Abstract

1. Extracellular recordings were obtained from 124 Purkinje cells (P-cells) in the flocculus of alert monkeys. P-cell simple spike-firing rate was analyzed quantitatively during various combinations of smooth-pursuit eye movement and passive head rotation. 2. During sinusoidal smooth eye movements, 80% of the P-cells displayed increased firing rate during ipsilateral and 20% during contralateral eye movement. Over the frequency range 0.3--1.4 Hz, firing-rate modulation was proportional to and in phase with maximum eye velocity. During the steady state of triangle-wave tracking, firing rate increased monotonically as a function of eye velocity. Since firing rate was uncorrelated with retinal-error velocity, one component of P-cell firing rate was related to eye velocity. 3. During the transient phase of triangle-wave tracking, when an instantaneous change in the direction of target movement caused a large retinal-error velocity, 40% of the P-cells were related only to eye velocity. Sixty percent of the P-cells displayed an overshoot or undershoot in firing rate, indicating a relationship to either retinal-error velocity or eye acceleration as well as to eye velocity. 4. During the vestibuloocular reflex (VOR), evoked by head rotation in the dark, P-cell firing rate was only weakly modulated. In contrast, when the monkey suppressed the VOR by fixating a target that rotated with him, P-cell rate was deeply modulated. Since the modulation was proportional to and in phase with maximum head velocity, another component of P-cell firing rate was related to head velocity. 5. Of 36 P-cells tested, 35 displayed firing-rate modulation during both suppression of the VOR and smooth-pursuit eye movement. P-cells that reached peak firing rate during ipsilateral head rotation also reached peak firing rate during ipsilateral smooth eye rotation. Average population sensitivitites to head velocity and eye velocity were equal. In three conditions in which eye and head velocity were elicited simultaneously, P-cell firing rate could be predicted by the linear, vector addition of the separate eye and head velocity components of firing rate. Therefore, the relatively weak modulation of P-cell firing rate during the VOR in the dark can be accounted for by the cancellation of equal but opposite head and eye velocity components. 6. The connections of flocculus P-cells to interneurons in the brain stem VOR pathways have been established in other mammals. In the context of those connections, P-cell firing patterns were appropriate to facilitate the eye movements the monkey was required to make. We conclude that the flocculus is important for sustaining any smooth eye movements that are different from those evoked by head rotation in the dark. The eye velocity component may represent an efference copy signal that sustains ongoing eye velocity during smooth pursuit.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 576 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3