Learned Dynamics of Reaching Movements Generalize From Dominant to Nondominant Arm

Author:

Criscimagna-Hemminger Sarah E.1,Donchin Opher1,Gazzaniga Michael S.2,Shadmehr Reza1

Affiliation:

1. Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205; and

2. Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755

Abstract

Accurate performance of reaching movements depends on adaptable neural circuitry that learns to predict forces and compensate for limb dynamics. In earlier experiments, we quantified generalization from training at one arm position to another position. The generalization patterns suggested that neural elements learning to predict forces coded a limb's state in an intrinsic, muscle-like coordinate system. Here, we test the sensitivity of these elements to the other arm by quantifying inter-arm generalization. We considered two possible coordinate systems: an intrinsic (joint) representation should generalize with mirror symmetry reflecting the joint's symmetry and an extrinsic representation should preserve the task's structure in extrinsic coordinates. Both coordinate systems of generalization were compared with a naı̈ve control group. We tested transfer in right-handed subjects both from dominant to nondominant arm (D→ND) and vice versa (ND→D). This led to a 2 × 3 experimental design matrix: transfer direction (D→ND/ND→D) by coordinate system (extrinsic, intrinsic, control). Generalization occurred only from dominant to nondominant arm and only in extrinsic coordinates. To assess the dependence of generalization on callosal inter-hemispheric communication, we tested commissurotomy patient JW. JWshowed generalization from dominant to nondominant arm in extrinsic coordinates. The results suggest that when the dominant right arm is used in learning dynamics, the information could be represented in the left hemisphere with neural elements tuned to both the right arm and the left arm. In contrast, learning with the nondominant arm seems to rely on the elements in the nondominant hemisphere tuned only to movements of that arm.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3