Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex

Author:

Fukuda A.1,Mody I.1,Prince D. A.1

Affiliation:

1. Department of Neurology and Neurological Sciences, Stanford UniversitySchool of Medicine, California 94305.

Abstract

1. The postnatal maturation of gamma-aminobutyric acid (GABA)B receptor-mediated presynaptic inhibition was studied in brain slices of rat somatosensory cortex maintained in vitro. Patchclamp techniques were used to record whole-cell inhibitory post-synaptic currents from layer II-III neurons in animals from postnatal days (P) 7-24. Monosynaptic inhibitory postsynaptic currents (IPSCs) were evoked after N-methyl-D-aspartate (NMDA) and non-NMDA type glutamate receptors had been blocked by D-amino-phosphonovaleric acid (D-AP5, 20 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), respectively. These IPSCs were solely mediated by postsynaptic GABAA receptors because they were abolished by bicuculline (10 microM), reversed polarity near the chloride equilibrium potential, and were recorded with electrodes that contained Cs+ to block postsynaptic GABAB responses. 2. When pairs of stimuli separated by intervals of 0.1-10 s were used to evoke IPSCs, the second response was depressed, an effect that was maximal at 300 ms. Evoked IPSCs were also depressed by baclofen (10 microM). The paired pulse depression (PPD) of monosynaptic IPSCs was decreased or eliminated by 2-OH-saclofen (200 microM). These findings indicate that PPD of monosynaptic IPSCs was due to presynaptic GABAB receptor-mediated inhibition of GABA release. 3. There were no significant differences in the amounts of PPD in neurons from different age groups (P7-10, P12-17, P22-24) at any interstimulus interval tested (0.1-10 s).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3