Spatial Relationships of Visuomotor Transformations in the Superior Colliculus Map

Author:

Marino Robert A.,Rodgers C. Kip,Levy Ron,Munoz Douglas P.

Abstract

The oculomotor system is well understood compared with other motor systems; however, we do not yet know the spatial details of sensory to motor transformations. This study addresses this issue by quantifying the spatial relationships between visual and motor responses in the superior colliculus (SC), a midbrain structure involved in the transformation of visual information into saccadic motor command signals. We collected extracellular single-unit recordings from 150 visual-motor (VM) and 28 motor (M) neurons in two monkeys trained to perform a nonpredictive visually guided saccade task to 110 possible target locations. Motor related discharge was greater than visual related discharge in 94% (141/150) of the VM neurons. Across the population of VM neurons, the mean locations of the peak visual and motor responses were spatially aligned. The visual response fields (RFs) were significantly smaller than and usually contained within the motor RFs. Converting RFs into the SC coordinate system significantly reduced any misalignment between peak visual and motor locations. RF size increased with increasing eccentricity in visual space but remained invariant on the SC map beyond 1 mm of the rostral pole. RF shape was significantly more symmetric in SC map coordinates compared with visual space coordinates. These results demonstrate that VM neurons specify the same location of a target stimulus in the visual field as the intended location of an upcoming saccade with minimal misalignment to downstream structures. The computational consequences of spatially transforming visual field coordinates to the SC map resulted in increased alignment and spatial symmetry during visual-sensory to saccadic-motor transformations.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3