Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro

Author:

Thompson S. M.1,Gahwiler B. H.1

Affiliation:

1. Brain Research Institute, University of Zurich, Switzerland.

Abstract

1. Intracellular recording techniques were used to investigate the mechanisms underlying the activity-dependent lability of inhibitory synaptic potentials indirectly evoked in CA3 pyramidal neurons by stimulation of the mossy fiber afferent pathway in organotypic slice cultures of hippocampus. 2. Repetitive stimulation (3-10 Hz, 30-60 s) was found to reduce the amplitude of the inhibitory postsynaptic potential (IPSP) and occasionally lead to repetitive, epileptiform discharge. 3. Under single-electrode voltage-clamp, the current underlying the inhibitory postsynaptic potential (IPSC) was found to have the same reversal potential (EIPSC) as the response to iontophoretically applied gamma-aminobutyric acid (EGABA), and both were blocked by bicuculline. Reducing the extracellular Cl- concentration from 153 to 89 mM shifted EGABA in the depolarizing direction by 9 mV from -64.7 to -55.6 mV, an amount close to that predicted by the Nernst equation. We therefore presume that the IPSC is mediated by GABA and that the reversal potentials of both are equal to ECl-. 4. Under single-electrode voltage-clamp, repetitive stimulation (3-10 Hz, 30-60 s) was found to cause a mean decrease in the conductance underlying the IPSC (gIPSC) of 22%. This decrease was independent of the membrane potential at which stimuli were delivered. 5. Under single-electrode voltage-clamp, repetitive stimulation (3-10 Hz, 30-60 s) was found to cause a 2-8 mV depolarizing shift in EIPSC when the membrane potential was held constant 5-15 mV depolarized from EIPSC. The mean decrease in IPSC driving force was 49%. If membrane potential was held 10-20 mV hyperpolarized from EIPSC, there was no change in driving force. 6. Currents activated by iontophoretically applied GABA were decreased in amplitude following repetitive stimulation at depolarized, but not hyperpolarized, holding potentials. 7. The decrease in IPSC driving force following repetitive stimulation at depolarized holding potentials was less after decreasing the extracellular K+ concentration from 5.8 to 1 mM. 8. We conclude that the decrease in driving force following repetitive stimulation results from an increase in the intracellular Cl- concentration, and that the activity-dependent decrease in gIPSC results from a decrease in presynaptic release rather than from postsynaptic receptor desensitization.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 309 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3