Morphologically Identified Cutaneous Afferent DRG Neurons Express Three Different Potassium Currents in Varying Proportions

Author:

Everill Brian1,Rizzo Marco A.1,Kocsis Jeffery D.1

Affiliation:

1. Department of Neurology, Yale University School of Medicine, New Haven 06510; and Neuroscience Research Center, Department of Veterans Affairs Medical Center, West Haven, Connecticut 06516

Abstract

Everill, Brian, Marco A. Rizzo, and Jeffery D. Kocsis. Morphologically identified cutaneous afferent DRG neurons express three different potassium currents in varying proportions. J. Neurophysiol. 79: 1814–1824, 1998. Outward K+ currents were recorded using a whole cell patch-clamp configuration, from acutely dissociated adult rat cutaneous afferent dorsal root ganglion (DRG) neurons (L4 and L5) identified by retrograde labeling with Fluoro-gold. Recordings were obtained 16–24 h after dissociation from cells between 39 and 49 mm in diameter with minimal processes. These cells represent medium-sized DRG neurons relative to the entire population, but are large cutaneous afferent neurons giving rise to myelinated axons. Voltage-activated K+ currents were recorded routinely during 300-ms depolarizing test pulses increasing in 10-mV steps from −40 to +50 mV; the currents were preceded by a 500-ms conditioning prepulse of either −120 or −40 mV. Coexpression of at least three components of K+ current was revealed. Separation of these components was achieved on the basis of sensitivities to the K+ channel blockers, 4-aminopyridine (4-AP) and dendrotoxin (DTx), and by the current responses to variation in conditioning voltage. Changing extracellular K+ concentration from 3 to 40 mM resulted in a shift to the right of the I-V curve commensurate with K+ being the principal charge carrier. Presentation of 100 mM 4-AP revealed a rapidly activating K+ current sensitive to low concentrations of 4-AP. High concentrations of 4-AP (6 mM) extinguished all inactivating current, leaving almost pure sustained current ( I K). On the basis of the relative distribution of K+ currents neurons could be separated into three distinct categories: fast inactivating current ( I A), slow inactivating current ( I D), and sustained current ( I K); only I A and I K; and slow inactivating current and I K. However, I K was always the dominant outward current component. These results indicate that considerable variation in K+ currents is present not only in the entire population of DRG neurons, as previously reported, but even within a restricted size and functional group (large cutaneous afferent neurons).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3