Affiliation:
1. Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland; and
2. Departments of Psychological and Brain Sciences and Neuroscience, Johns Hopkins University, Baltimore, Maryland
Abstract
Item-specific spatial information is essential for interacting with objects and for binding multiple features of an object together. Spatial relational information is necessary for implicit tasks such as recognizing objects or scenes from different views but also for explicit reasoning about space such as planning a route with a map and for other distinctively human traits such as tool construction. To better understand how the brain supports these two different kinds of information, we used functional MRI to directly contrast the neural encoding and maintenance of spatial relations with that for item locations in equivalent visual scenes. We found a double dissociation between the two: whereas item-specific processing implicates a frontoparietal attention network, including the superior frontal sulcus and intraparietal sulcus, relational processing preferentially recruits a cognitive control network, particularly lateral prefrontal cortex (PFC) and inferior parietal lobule. Moreover, pattern classification revealed that the actual meaning of the relation can be decoded within these same regions, most clearly in rostrolateral PFC, supporting a hierarchical, representational account of prefrontal organization.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献