Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study

Author:

Schwindt P. C.,Crill W. E.

Abstract

1. The rhythmic firing properties of cat lumbar motoneurons were determined by intracellular injection of constant-current pulses. The activation thresholds of various membrane current components were subsequently determined in the same neurons using the technique of somatic voltage clamp. Voltage steps were employed that traversed the same voltage range as the membrane potential between rhythmic spikes (the "pacemaker potential"). 2. At fast firing rates (e.g., secondary-range firing), the pacemaker potential remains entirely within the range of voltages over which a previously described (42), persistent, inward, calcium current (Ii) is activated during voltage clamp. Thus Ii is tonically activated and counters the repolarizing, outward, potassium currents during fast firing. At slower firing rates (e.g., primary-range firing), the pacemaker potential only partially enters the voltage range where Ii is activated, and this voltage range may not be entered at all the slowest firing rates. Cells in which Ii deteriorated could not be made to fire at fast rates although they could still fire at slow rates. 3. The use of two independent intracellular microelectrodes allowed accurate measurement of the somatic voltage at which spike initiation occurred ("firing level"). In all cells, firing level increased significantly as steady firing rate increased. During a given injected-current pulse, firing level also exhibited a more moderate variation with time. 4. The variation in firing level was caused by the accommodative properties of the axon initial segment. Except at the fastest firing rates, firing level occurs at less depolarized voltages than the somatic sodium conductance threshold. In addition, somatic sodium current shows minimal inactivation over the voltage range traversed by the pacemaker potentials during slower firing rates. An inactivation of about 50% is attained during the maximum firing rate. 5. We discuss the ways by which Ii activation and thr progressive rise in firing level influence motoneuron rhythmic firing. We propose that the basic role of Ii is to aid in maintaining a linear f-I curve, especially at faster firing rates. We hypothesize that the relative balance between persistent inward and outward ionic currents plays a major role in determining the f-I curve slope among different neurons and between primary- and secondary-range firing of cat lumbar motoneurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3