Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation

Author:

Buchanan J. T.,Cohen A. H.

Abstract

1. Application of D-glutamate to the isolated spinal cord of the lamprey produces phasic activity in ventral roots, which is similar to that of the muscles of the intact swimming animal (5,18). Therefore, the isolated spinal cord may be used as a convenient model for the investigation of the generation of locomotor rhythms in a vertebrate. 2. Almost all slow muscle fibers exhibited excitatory junctional potentials (EJPs) during swimming activity. The number of EJPs per cycle increased with the intensity of ventral root (VR) bursting. Few twitch fibers were active, and these fired action potentials only during high intensities of VR bursts. 3. As was found by Russell and Wallen (25), myotomal motoneurons had oscillating membrane potentials during fictive swimming which, on the average, reached a peak depolarization in the middle of the VR burst (phi = 0.21 +/- 0.05; phi = 0 is defined as the onset of the VR burst, and the duration of the cycle is set equal to 1). Membrane potential oscillations in fin motoneurons were antiphasic to those of nearby myotomal motoneurons (peak depolarization phi = 0.68 +/- 0.05). 4. Lateral interneurons had oscillating membrane potentials in synchrony with those of myotomal motoneurons (peak depolarization phi = 0.21 +/- 0.10). Interneurons with axons projecting contralaterally and caudally (CC interneurons) had oscillating membrane potentials that peaked significantly earlier in the cycle (peak depolarization phi = 0.06 +/- 0.12). 5. Edge cells were only weakly modulated during fictive swimming. Their peak depolarizations occurred near the end of the VR burst (phi = 0.33 +/- 0.10). Most giant interneurons were not phasically modulated during fictive swimming. 6. Repetitive intracellular stimulation of Muller cells during fictive swimming generally evoked an increased burst intensity in ipsilateral VRs and a decreased burst intensity in contralateral VRs. The cells M3, B1, and B2 also produced increases or decreases in the frequency of VR bursts. Repetitive intracellular stimulation of sensory dorsal cells could also change the intensities and timing of VR bursts. 7. This study is an initial survey of lamprey spinal interneurons that participate in swimming activity. Lateral interneurons and CC interneurons are active during fictive swimming and probably help coordinate the undulations of the body, but their roles in pattern generation are not known. The central pattern generator is subject to modification by descending and sensory inputs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3