Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion

Author:

Forssberg H.

Abstract

1. Tactile stimuli to the paw consisting of a stick making contact or an air puff aimed at the dorsum were used to study the phasic influence of locomotor activity on the reflex pattern elicited in extensor and flexor muscles and on the induced compensatory movements in intact cats. The resulting movements and reflex pattern are called "stumbling corrective reactions." 2. The basic reflex pattern and movements of the stumbling corrective reaction are: a) if the stimulus occurs during the swing phase, a short-latency activation of the flexor muscles, which induces an additional flexion of the limb lifting the paw over the obstacle; b) if the stimulus occurs during the support phase, an inhibition followed by an excitation of the extensor muscles, which neither increase nor decrease the extension. However, the stimulus evokes an increased flexor activity in the succeeding swing phase, which induces a brisker flexion. 3. Tactile stimuli to the proximal part of the limb or to the belly in front of the knee evoked the same type of phase-dependent compensatory reactions. Such reactions would presumably be beneficial for the animal to avoid high obstacles that impede movement. 4. A nonnoxious electrical stimulus (typically 2 mA; 1 ms) applied to the dorsum of the paw was used to study systematically the reflex pattern of the stumbling corrective reaction. Two pathways were defined to the knee flexor (semitendinosus). One early burst was evoked at about 10 ms and one later at about 25 ms after the stimulus. Short inhibitory pathways and longer excitatory pathways (20-50 ms) projected to the extensor nuclei. A short-latency (10 ms) excitatory pathway to the ankle extensor (lateral gastrocnemius) was also activated. 5. A painful electrical stimulus applied to the dorsum of the paw evoked large flexor responses during the whole step cycle. During the support phase the locomotion was disrupted as the supporting limb was withdrawn. 6. The results demonstrate that intact cats are able to compensate rapidly for unpredicted perturbations and that the reflex pattern and the induced corrective movements are adapted to the locomotor activity so that functionally meaningful movements are evoked in each phase of the step cycle. 7. The evoked reflexes and their modulation are consistent with those previously found in chronic spinal cats during walking and in paralyzed spinal cats performing "fictive locomotion." It is suggested that the same spinal pathways are used, and that they are controlled by the spinal "locomotor generator."

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 388 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3