Axonal L-Type Ca2+ Channels and Anoxic Injury in Rat CNS White Matter

Author:

Brown Angus M.1,Westenbroek Ruth E.2,Catterall William A.2,Ransom Bruce R.1

Affiliation:

1. Department of Neurology and

2. Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195

Abstract

We studied the magnitude and route(s) of Ca2+ flux from extra- to intracellular compartments during anoxia in adult rat optic nerve (RON), a central white matter tract, using Ca2+-sensitive microelectrodes to monitor extracellular [Ca2+] ([Ca2+]o). One hour of anoxia caused a rapid loss of the stimulus-evoked compound action potential (CAP), which partially recovered following re-oxygenation, indicating that irreversible injury had occurred. After an initial increase caused by extracellular space shrinkage, anoxia produced a sustained decrease of 0.42 mM (29%) in [Ca2+]o. We quantified the [Ca2+]o decrease as the area below baseline [Ca2+]o during anoxia and used this as a qualitative index of suspected Ca2+ influx. The degree of RON injury was predicted by the amount of Ca2+ leaving the extracellular space. Bepridil, 0 Na+ artificial cerebrospinal fluid or tetrodotoxin reduced suspected Ca2+ influx during anoxia implicating reversal of the Na+-Ca2+ exchanger as a route of Ca2+ influx. Diltiazem reduced suspected Ca2+ influx during anoxia, suggesting that Ca2+ influx via L-type Ca2+channels is a route of toxic Ca2+ influx into axons during anoxia. Immunocytochemical staining was used to demonstrate and localize high-threshold Ca2+channels. Only α1C and α1D subunits were detected, indicating that only L-type Ca2+ channels were present. Double labeling with anti-neurofilament antibodies or anti-glial fibrillary acidic protein antibodies, localized L-type Ca2+channels to axons and astrocytes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3