Muscarinic Depression of Synaptic Transmission in the Epileptogenic GABA Withdrawal Syndrome Focus

Author:

Silva-Barrat C.1,Szente M.1,Menini Ch.1,Velluti J. C.1,Champagnat J.1

Affiliation:

1. Laboratoire de Génétique de la Neurotransmission et des Processus Neurodégénératifs, Unité Mixte de Recherche 9923, Centre National de la Recherche Scientifique, 75634 Paris, France

Abstract

The GABA withdrawal syndrome (GWS) is a model of local status epilepticus consecutive to the interruption of a prolonged GABA infusion into the rat somatomotor cortex. Bursting patterns in slices from GWS rats include intrinsic bursts of action potentials (APs) induced by intracellular depolarizing current injection and/or paroxysmal depolarization shifts (PDSs) induced by white matter stimulation. Possible changes in the effects of cholinergic drugs after in vivo induction of GWS were investigated on bursting cells ( n = 30) intracellularly recorded in neocortical slices. In GWS slices, acetylcholine (Ach, 200-1000 μM) or carbachol (Cch, 50 μM) applications increased the number of bursts induced by depolarizing current injection while synaptically induced PDSs were significantly diminished (by 50–60%) or even blocked independently of the cholinergic-induced depolarization. The intrinsic burst facilitation and PDS depression provoked by Ach or Cch were mimicked by methyl-acetylcholine (mAch, 100–400 μM, n = 11), were reversed by atropine application (1–50 μM, n = 3), and were not mimicked by nicotine (50–100 μM, n = 4), indicating the involvement of muscarinic receptors. In contrast, in nonbursting cells from the same epileptic area ( n = 42) or from equivalent area in control rats ( n = 24), a nonsignificant muscarinic depression of EPSPs was induced by Cch and Ach. The mAch depression of excitatory postsynaptic potential (EPSPs) was significantly lower than that seen for PDSs in GWS rats. None of the cholinergic agonists caused bursting appearance in these cells. Therefore the present study demonstrates a unique implication of muscarinic receptors in exerting opposite effects on intrinsic membrane properties and on synaptic transmission in epileptiform GWS. Muscarinic receptor mechanisms may therefore have a protective role against the development and spread of epileptiform activity from the otherwise-activated epileptic focus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3