Cycle-by-cycle analysis of neural oscillations

Author:

Cole Scott1,Voytek Bradley123

Affiliation:

1. Neurosciences Graduate Program, University of California, San Diego, La Jolla, California

2. Department of Cognitive Science, University of California, San Diego, La Jolla, California

3. Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California

Abstract

Neural oscillations are widely studied using methods based on the Fourier transform, which models data as sums of sinusoids. This has successfully uncovered numerous links between oscillations and cognition or disease. However, neural data are nonsinusoidal, and these nonsinusoidal features are increasingly linked to a variety of behavioral and cognitive states, pathophysiology, and underlying neuronal circuit properties. We present a new analysis framework, one that is complementary to existing Fourier and Hilbert transform-based approaches, that quantifies oscillatory features in the time domain on a cycle-by-cycle basis. We have released this cycle-by-cycle analysis suite as “bycycle,” a fully documented, open-source Python package with detailed tutorials and troubleshooting cases. This approach performs tests to assess whether an oscillation is present at any given moment and, if so, quantifies each oscillatory cycle by its amplitude, period, and waveform symmetry, the latter of which is missed with the use of conventional approaches. In a series of simulated event-related studies, we show how conventional Fourier and Hilbert transform approaches can conflate event-related changes in oscillation burst duration as increased oscillatory amplitude and as a change in the oscillation frequency, even though those features were unchanged in simulation. Our approach avoids these errors. Furthermore, we validate this approach in simulation and against experimental recordings of patients with Parkinson’s disease, who are known to have nonsinusoidal beta (12–30 Hz) oscillations. NEW & NOTEWORTHY We introduce a fully documented, open-source Python package, bycycle, for analyzing neural oscillations on a cycle-by-cycle basis. This approach is complementary to traditional Fourier and Hilbert transform-based approaches but avoids specific pitfalls. First, bycycle confirms an oscillation is present, to avoid analyzing aperiodic, nonoscillatory data as oscillations. Next, it quantifies nonsinusoidal aspects of oscillations, increasingly linked to neural circuit physiology, behavioral states, and diseases. This approach is tested against simulated and real data.

Funder

NSF Graduate Research FellowShip Program

UC San Diego Chancellor's Research Excellent Scholarship

Alfred P. Sloan Foundation (Sloan Foundation)

Whitehall Foundation

NSF | SBE | Division of Behavioral and Cognitive Sciences (BCS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3