Favored patterns in spike trains. I. Detection

Author:

Dayhoff J. E.,Gerstein G. L.

Abstract

Traditional spike-train analysis methods cannot identify patterns of firing that occur frequently but at arbitrary times. It is appropriate to search for recurring patterns because such patterns could be used for information transfer. In this paper, we present two methods for identifying "favored patterns" --patterns that occur more often than is reasonably expected at random. The quantized Monte Carlo method identifies and establishes significance for favored patterns whose detailed timing may vary but that do not have extra or missing spikes. The template method identifies favored patterns whose occurrences may have extra or missing spikes. This method is useful when employed after the results of the first method are known. Studies with simulated spike trains containing known interpolated patterns are used to establish the sensitivity and accuracy of the quantized Monte Carlo method. Certain trends with regard to parameters of the detected patterns and of the analysis methods are described. Application of these methods to neurophysiological data has shown that a large proportion of spike trains have favored patterns. These findings are described in the accompanying paper (3).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3