Cross-correlation analysis of geniculostriate neuronal relationships in cats

Author:

Tanaka K.

Abstract

The organization of geniculate inputs to a cat's visual cortical cell was studied by a cross-correlation technique. Simultaneous extracellular recordings were made in the lateral geniculate nucleus and in the striate cortex, and neuronal connectivity between a geniculate cell and a striate cell was examined by cross-correlograms of their impulse discharges under photic stimuli. Of 243 pairs of geniculate and striate cells with overlapping receptive fields, 82 showed positive correlations with short (0.9-2.7 ms) delay times. The delays in 65 of the 82 pairs were short enough to infer that the geniculate cell exerted monosynaptic excitatory action on the striate cell. Monosynaptic excitations were found in all types of striate cells. Those in cells with exclusively an on area or an off area (E-on/off cells) or in simple cells originated mostly from X geniculate cells; those in special-complex cells originated exclusively from Y geniculate cells; and those in standard-complex cells arose from both X and Y geniculate cells. The convergence number from geniculate cells to an E-on/off or simple striate cell was estimated as more than 10, since about 1/10 of the discharges from an E-on/off or simple cell in response to a moving stimulus was correlated with discharges from a geniculate cell. A larger convergence number (more than 30) was obtained for complex cells. Convergence from 2 to 5 geniculate cells was actually demonstrated in 17 of the 32 striate cells, each of which was tested in pair with 3-14 geniculate cells. The converging inputs thus observed included both X and Y geniculate cells in one E-on, one simple, and three standard-complex cells. They included both on-center and off-center geniculate cells in one simple, one special-complex, and five standard-complex cells. Under stimulation with a stationary light slit, the center fields but not the surround fields of geniculate cells were found to contribute to the receptive fields of the simple striate cells. However, the surround fields of geniculate cells contributed to the subliminal response areas flanking the central areas of E-on/off cells. The center fields of the geniculate cells also contributed to the central areas of the E-on/off cells. These observations suggest different models for simple cells and E-on/off cells as regards the organization of their geniculate inputs; simple cells may receive inputs from both on-center and off-center geniculate cells, but E-on/off cells receive inputs only from one or the other of them.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3