Responses of Superficial Dorsal Horn Neurons to Intradermal Serotonin and Other Irritants: Comparison With Scratching Behavior

Author:

Jinks Steven L.1,Carstens E.1

Affiliation:

1. Section of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616

Abstract

Scratching behavior is used to assess itch sensation in animals, but few studies have addressed the relative scratch-inducing capacity of different algesic and pruritic chemicals. Furthermore, central neural mechanisms underlying itch are not well understood. We used electrophysiological and behavioral methods to investigate the ability of several irritant chemicals to excite neurons in the superficial dorsal horn, as well as to elicit scratching, in rats. In anesthetized rats, single neurons in the superficial lumbar dorsal horn, identified by their responsiveness to intracutaneous (ic) histamine, were classified as wide dynamic range (WDR) or nociceptive-specific (NS). Serotonin (5-HT) given ic to the paw excited most (88%) WDR and NS neurons over a prolonged time course (often up to 40 min). 5-HT–evoked responses exhibited significant tachyphylaxis. Most neurons also gave shorter-duration responses to ic capsaicin (92%) and mustard oil (71%). In separate behavioral experiments, significant dose-related hind limb scratching directed at the ic injection site in the back of the neck was elicited by 5-HT over a time course similar to that of evoked neuronal firing. A second 5-HT injection made 40 min later at the same site elicited significantly less scratching. Formalin also elicited scratching that was not dose-related and less than that evoked by 5-HT. 5-HT and Formalin also evoked head or whole-body shakes that were significantly correlated with scratching. Neither histamine, capsaicin, nor vehicle controls elicited significant scratching or shaking. In rats, 5-HT appears to be more pruritogenic than histamine as assessed by scratching and shaking behavior, and excites superficial dorsal horn neurons over a behaviorally relevant time course. However, because most neurons additionally responded to pain-producing stimuli, they are not itch-specific. They might nonetheless contribute to neural pathways that distinguish between pain and itch based on some neural mechanism such as frequency coding.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3