Randall’s plaque in stone formers originates in ascending thin limbs

Author:

Evan Andrew P.1,Coe Fredric L.2,Lingeman James3,Bledsoe Sharon1,Worcester Elaine M.2

Affiliation:

1. Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana

2. Nephrology Section, Department of Medicine, University of Chicago, Chicago, Illinois

3. Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana

Abstract

Randall’s plaque, an attachment site over which calcium oxalate stones form, begins in the basement membranes of thin limbs of the loop of Henle. The mechanism of its formation is unknown. Possibly, enhanced delivery of calcium out of the proximal tubule, found in many stone formers, increases reabsorption of calcium from the thick ascending limb into the interstitium around descending vasa recta, which convey that calcium into the deep medulla, and raises supersaturations near thin limbs (“vas washdown”). According to this hypothesis, plaque should form preferentially on ascending thin limbs, which do not reabsorb water. We stained serial sections of papillary biopsies from stone-forming patients for aquaporin 1 (which is found in the descending thin limb) and the kidney-specific chloride channel ClC-Ka (which is found in the ascending thin limb). Plaque (which is detected using Yasue stain) colocalized with ClC-Ka, but not with aquaporin 1 (χ2 = 464, P < 0.001). We conclude that plaque forms preferentially in the basement membranes of ascending thin limbs, fulfilling a critical prediction of the vas washdown theory of plaque pathogenesis. The clinical implication is that treatments such as a low-sodium diet or thiazide diuretics that raise proximal tubule calcium reabsorption may reduce formation of plaque as well as calcium kidney stones.

Funder

NIDDK

Publisher

American Physiological Society

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3