Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule

Author:

Lee Wing-Kee,Reichold Markus,Edemir Bayram,Ciarimboli Giuliano,Warth Richard,Koepsell Hermann,Thévenod Frank

Abstract

The positively charged fluorescent dyes ethidium (Et+) and propidium (Pr2+) are widely used as DNA and necrosis markers. Et+is cytotoxic and mutagenic. The polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2), and OCT3 (SLC22A3) mediate electrogenic facilitated diffusion of small (≤500 Da) organic cations with broad specificities. In humans, OCT2 mediates basolateral uptake by kidney proximal tubules (PT), whereas in rodents OCT1/2 are involved. In mouse kidney, perfused Et+accumulated predominantly in the S2/S3 segments of the PT, but not Pr2+. In cells stably overexpressing human OCTs (hOCTs), Et+uptake was observed with Kmvalues of 0.8 ± 0.2 μM (hOCT1), 1.7 ± 0.5 μM (hOCT2), and 2.0 ± 0.5 μM (hOCT3), whereas Pr2+was not transported. Accumulation of Et+was inhibited by OCT substrates quinine, 3-methyl-4-phenylpyridinium (MPP+), cimetidine, and tetraethylammonium (TEA+). For hOCT1 and hOCT2, the IC50values for MPP+, TEA+, and cimetidine were higher than for inhibition of previously tested transported substrates. For hOCT2, the inhibition of Et+uptake by MPP+and cimetidine was shown to be competitive. Et+also inhibited transport of 0.1 μM [3H]MPP+by all hOCT isoforms with IC50values between 0.4 and 1.3 μM, and the inhibition of hOCT1-mediated uptake of MPP+by Et+was competitive. In Oct1/2−/−mice, Et+uptake in the PT was almost abolished. The data demonstrate that Et+is taken up avidly by the PT, which is mediated by OCT1 and/or OCT2. Considering the high affinity of OCTs for Et+and their strong expression in various organs, strict safety guidelines for Et+handling should be reinforced.

Publisher

American Physiological Society

Subject

Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3