Section-specific expression of acid-base and ammonia transporters in the kidney tubules of the goldfish Carassius auratus and their responses to feeding

Author:

Fehsenfeld Sandra1,Wood Chris M.1ORCID

Affiliation:

1. University of British Columbia, Department of Zoology, Vancouver, Canada

Abstract

In teleost fishes, renal contributions to acid-base and ammonia regulation are often neglected compared with the gills. In goldfish, increased renal acid excretion in response to feeding was indicated by increased urine ammonia and inorganic phosphate concentrations and decreased urine pH. By microdissecting the kidney tubules and performing quantitative real-time PCR and/or immunohistochemistry, we profiled the section-specific expression of glutamate dehydrogenase (GDH), glutamine synthetase (GS), Na+/H+-exchanger 3 (NHE3), carbonic anhydrase II (CAIIa), V-H+-ATPase subunit 1b, Cl/[Formula: see text]-exchanger 1 (AE1), Na+/[Formula: see text]-cotransporter 1 (NBC1), Na+/K+-ATPase subunit 1α, and Rhesus-proteins Rhbg, Rhcg1a, and Rhcg1b. Here, we show for the first time that 1) the proximal tubule appears to be the major site for ammoniagenesis, 2) epithelial transporters are differentially expressed along the renal tubule, and 3) a potential feeding-related “acidic tide” results in the differential regulation of epithelial transporters, resembling the mammalian renal response to a metabolic acidosis. Specifically, GDH and NHE3 mRNAs were upregulated and GS downregulated in the proximal tubule upon feeding, suggesting this section as a major site for ammoniagenesis and acid secretion. The distal tubule may play a major role in renal ammonia secretion, with feeding-induced upregulation of mRNA and protein for apical NHE3, cytoplasmic CAIIa, universal Rhcg1a and apical Rhcg1b, and downregulation of basolateral Rhbg and AE1. Changes in mRNA expression of the Wolffian ducts and bladder suggest supporting roles in fine-tuning urine composition. The present study verifies an important renal contribution to acid-base balance and emphasizes that studies looking at the whole kidney may overlook key section-specific responses.

Funder

NSERC Discovery grant

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3