Regulation of osmotic water permeability during differentiation of inner medullary collecting duct

Author:

Siga E.1,Horster M. F.1

Affiliation:

1. Physiologisches Institut, Universitat Munchen, Federal Republic ofGermany.

Abstract

Urinary osmotic concentration capacity during renal ontogeny is subject to changes of medullary cytoarchitecture and of segmental epithelial transport characteristics. Osmotic equilibrium between interstitial and tubular fluid of the terminal nephron segment in response to vasopressin is an absolute essential of maximal urinary osmotic concentration. The regulation of osmotic water permeability (Pf) in this terminal epithelial segment during ontogenetic differentiation has not been documented. The inner medullary collecting duct (IMCD), the terminal 40% of total segmental length, was dissected at two stages of postnatal ontogenetic differentiation from immature (days 7-15) and from mature (days 33-37) rat kidneys and perfused in vitro. Pf (micron/s) was measured (bath hyperosmotic) in the absence and presence of arginine vasopressin (AVP, 230 pM). Basal Pf was 32.3 +/- 4.03 (n = 26) in the immature IMCD (IMCDi) and 111.5 +/- 20.6 (n = 15) in the mature segment (IMCDm). AVP increased Pf in IMCDi from 46.4 +/- 10.5 to 102 +/- 25.7 micron/s, whereas in IMCDm the AVP-dependent change of Pf was from 104.2 +/- 41.2 to 693 +/- 176 micron/s. AVP (2,300 pM) did not further increase Pf in IMCDi. Forskolin (50 microM) changed Pf in IMCDi from 34.9 +/- 6.3 to 104.1 +/- 16 micron/s; the corresponding change in IMCDm was from 150 +/- 32 to 985.8 +/- 133 micron/s. An analogue of adenosine 3',5'-cyclic monophosphate (cAMP; 10(-3) M) increased Pf in IMCDi from 35.5 +/- 11.4 to 138.5 +/- 32.6 and in IMCDm from 79.6 +/- 32.3 to 702.2 +/- 283 micron/s.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3