Modulation of bladder myofibroblast activity: implications for bladder function

Author:

Sui Gui-Ping,Wu Changhao,Roosen Alexander,Ikeda Youko,Kanai Anthony J.,Fry Christopher H.

Abstract

Bladder suburothelial myofibroblasts may modulate both sensory responses from the bladder wall and spontaneous activity. This study aimed to characterize further these cells in their response to exogenous agents implicated in mediating the above activity. Detrusor strips, with or without mucosa, and isolated suburothelial myofibroblasts were prepared from guinea pig bladders. Isometric tension, intracellular Ca2+, and membrane current were recorded. Cell pairs were formed by pushing two cells together. Tension, intracellular Ca2+, and membrane potential were also recorded from bladder sheets using normal or spinal cord-transected (SCT) rats. Spontaneous contractions were greater in detrusor strips with an intact mucosa and were augmented by 10 μM UTP. ATP, UTP, or reduced extracellular pH elicited Ca2+ transients and inward currents ( Erev −30 mV) in isolated cells. Capsaicin (5–30 μM) reduced membrane current (37 ± 12% of control) with minor effects on Ca2+ transients: sodium nitroprusside reduced membrane currents (40 ± 21% of control). Cell pair formation, without an increase in cell capacitance, augmented ATP and pH responses (180 ± 58% of control) and reduced the threshold to ATP and acidosis. Glivec (20–50 μM) reversibly blocked the augmentation and also reduced spontaneous activity in bladder sheets from SCT, but not normal, rats. Glivec also disrupted the spread of Ca2+ waves in SCT sheets, generating patterns similar to normal bladders. Suburothelial myofibroblasts respond to exogenous agents implicated in modulating bladder sensory responses; responses augmented by physical intercellular contact. The action of glivec and its selective suppression of spontaneous activity in SCT rats identifies a possible pathway to attenuate bladder overactivity.

Publisher

American Physiological Society

Subject

Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3