Collecting duct-specific knockout of nitric oxide synthase 3 impairs water excretion in a sex-dependent manner

Author:

Gao Yang1,Stuart Deborah1,Pollock Jennifer S.2,Takahishi Takamune3,Kohan Donald E.14

Affiliation:

1. Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah;

2. Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama;

3. Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee; and

4. George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah

Abstract

Nitric oxide (NO) inhibits collecting duct (CD) Na+ and water reabsorption. Mice with CD-specific knockout (KO) of NO synthase 1 (NOS1) have salt-sensitive hypertension. In contrast, the role of NOS3 in CD salt and water reabsorption is unknown. Mice with CD NOS3 KO were generated with loxP-flanked exons 9–12 (encodes the calmodulin binding site) of the NOS3 gene and the aquaporin-2 promoter-Cre transgene. There were no differences between control and CD NOS3 KO mice, irrespective of sex, in food intake, water intake, urine volume, urinary Na+ or K+ excretion, plasma renin concentration, blood pressure, or pulse during 7 days of normal (0.3%), high (3.17%), or low (0.03%) Na+ intake. Blood pressure was similar between genotypes during DOCA-high salt. CD NOS3 KO did not alter urine volume or urine osmolality after water deprivation. In contrast, CD NOS3 KO male, but not female, mice had lower urine volume and higher urine osmolality over the course of 7 days of water loading compared with control mice. Male, but not female, CD NOS3 KO mice had reduced urinary nitrite+nitrate excretion compared with controls after 7 days of water loading. Urine AVP and AVP-stimulated cAMP accumulation in isolated inner medullary CD were similar between genotypes. Western analysis did not reveal a significant effect of CD NOS3 KO on renal aquaporin expression. In summary, these data suggest that CD NOS3 may be involved in the diuretic response to a water load in a sex-specific manner; the mechanism of this effect remains to be determined.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3