Structure and development of the glomerular capillary wall and basement membrane

Author:

Abrahamson D. R.1

Affiliation:

1. Department of Cell Biology and Anatomy, University of Alabama atBirmingham, University Station 35294.

Abstract

The renal glomerular epithelium, Bowman's capsule, and tubule originate from a condensate of mesenchymal cells induced to undergo epithelial differentiation by a branch of the uretic bud. These nephrogenic cells aggregate and begin synthesizing the basement membrane molecules collagen type IV, heparan sulfate proteoglycans, and laminin as shown by immunofluorescence microscopy. Soon, the primitive nephron is invaginated by mesenchymal cells that establish the glomerular endothelium. Electron microscopy, metabolic labeling, and immunocytochemical techniques show that the endothelium and epithelium of early stage glomeruli each synthesize a basement membrane that appears to fuse, giving rise to the glomerular basement membrane (GBM). As development progresses, however, bulk GBM biosynthesis by the endothelium greatly diminishes or ceases. In contrast, GBM assembly by the epithelial podocytes continues and segments of new GBM appear beneath developing foot processes. In vivo labeling experiments with anti-laminin antibodies have shown that this new GBM derived from podocytes is subsequently spliced into existing GBM as capillary loop diameters expand. Molecular mechanisms for basement membrane fusion or splicing are not presently known but may involve partial enzymatic digestion and specific binding interactions among GBM components. The developing glomerular capillary wall, which filters plasma from very early stages, becomes decreasingly permeable to perfused macromolecules such as ferritin or immunoglobulin as the glomerulus matures. Evidence from immunolabeling studies showing that some monoclonal IgGs bind to the GBM only at specific developmental stages also indicates that temporal biochemical changes take place during GBM assembly. Such changes could include molecular rearrangement during basement membrane fusion and splicing and/or enzymatic and compositional modifications during maturation of the filtration barrier.

Publisher

American Physiological Society

Subject

Physiology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3