ATP and cAMP system in the in vitro response of microdissected cortical tubules to PTH

Author:

Kiebzak G. M.,Yusufi A. N.,Kusano E.,Braun-Werness J.,Dousa T. P.

Abstract

Responsiveness of proximal convoluted tubule (PCT) and distal convoluted tubule (DCT) microdissected from mouse kidney to PTH, in terms of cAMP accumulation and stimulation of adenylate cyclase, was examined. In both PCT and DCT, the cell-free adenylate cyclase was stimulated at least 10-fold by the same dose (10 U/ml) of PTH, and activity of cAMP phosphodiesterase was about 80% higher in DCT than in PCT. In intact tubules, while the incubation with PTH increased cAMP content in DCT more than 10-fold, it failed to increase the cAMP levels in PCT. To explain discrepancies between cell-free and intact cell incubations, ATP content in microdissected tubules was determined with use of a microbioluminescence assay. ATP content in PCT (4.0 +/- 1.3 fmol/mm, n = 30) was dramatically lower than ATP content of DCT (376.8 +/- 54.3 fmol/mm, n = 25). Incubation with 1 microM rotenone reduced markedly (delta -98%) the ATP content in DCT. In DCT, with ATP depleted by 1 microM rotenone, PTH failed to increase the cAMP, although 1 microM rotenone did not inhibit the adenylate cyclase activity. When 0.1 mM of 1-methyl-3-isobutylxanthine (MIX) was added to the incubation medium, PTH caused a marked elevation in tubular cAMP in PCT and to even a greater degree in DCT. Present results show that various segments of microdissected tubules differ greatly in their ability to maintain adequate ATP levels for cAMP generation in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3