Antagonistic effects of bone morphogenetic protein-4 and -7 on renal mesangial cell proliferation induced by aldosterone through MAPK activation

Author:

Otani Hiroyuki,Otsuka Fumio,Inagaki Kenichi,Takeda Masaya,Miyoshi Tomoko,Suzuki Jiro,Mukai Tomoyuki,Ogura Toshio,Makino Hirofumi

Abstract

Aldosterone and angiotensin II (ANG II) contribute to the development and progression of renal damage. Here we investigated the effects of bone morphogenetic proteins (BMPs) on renal cell proliferation evoked by aldosterone and ANG II with mouse mesangial cells, which express mineralocorticoid receptors (MR), ANG II type 1 receptors, and BMP signaling molecules. Aldosterone and ANG II stimulated mesangial cell mitosis and activated ERK1/2 and SAPK/JNK signaling. These aldosterone effects were neutralized by the MR antagonist eplerenone and inhibition of transcription or translation, suggesting the involvement of genomic activation via MR. BMP-4 and BMP-7 stimulated Smad1, -5, -8 signaling more potently than BMP-2 and BMP-6, leading to suppression of mesangial cell mitosis and MR expression. MAPK inhibitors including U-0126 and SP-600125, but not SB-203580, suppressed aldosterone-induced cellular DNA synthesis, implying that ERK1/2 and SAPK/JNK pathways play crucial roles in mesangial cell proliferation. BMP-4 and BMP-7 inhibited phosphorylation of ERK1/2 and SAPK/JNK induced by aldosterone while activating p38 pathway, resulting in inhibition of aldosterone-induced cell mitosis. In contrast, aldosterone modulated the mesangial BMP system by decreasing expression of ALK-3, BMP-4, and BMP-7 while increasing inhibitory Smad6 expression. Thus novel functional cross talk between the mesangial BMP system and aldosterone signaling was uncovered, in which inhibition of MAPK signaling and MR expression by BMP-4 and BMP-7 may be involved in ameliorating renal damage due to mesangial proliferation caused by aldosterone.

Publisher

American Physiological Society

Subject

Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3