Renalase regulates peripheral and central dopaminergic activities

Author:

Quelhas-Santos Janete12,Serrão Maria Paula3,Soares-Silva Isabel12,Fernandes-Cerqueira Cátia1,Simões-Silva Liliana1,Pinho Maria João3,Remião Fernando4,Sampaio-Maia Benedita15,Desir Gary V.6,Pestana Manuel278

Affiliation:

1. Nephrology Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal;

2. Nephrology and Infectious Diseases Research and Development Group, Instituto Nacional de Engenharia Biomédica-(I3S);

3. Faculdade de Medicina da Universidade do Porto, Department of Pharmacology and Therapeutics, Porto, Portugal;

4. Centro de Química da Universidade do Porto/Serviço de Toxicologia, Faculdade de Farmácia, University of Porto, Porto, Portugal;

5. Faculty of Dental Medicine, University of Porto, Porto, Portugal;

6. Department of Medicine, Veterans Affairs Connecticut Healthcree System, Yale University, New Haven, Connecticut;

7. Faculdade de Medicina da Universidade do Porto, Department of Renal, Urological, and Infectious Diseases, Porto, Portugal; and

8. Department of Nephrology, São João Hospital Center, Entidade Pública Empresarial, Porto, Portugal

Abstract

Renalase is a recently identified FAD/NADH-dependent amine oxidase mainly expressed in kidney that is secreted into blood and urine where it was suggested to metabolize catecholamines. The present study evaluated central and peripheral dopaminergic activities in the renalase knockout (KO) mouse model and examined the changes induced by recombinant renalase (RR) administration on plasma and urine catecholamine levels. Compared with wild-type (WT) mice, KO mice presented increased plasma levels of epinephrine (Epi), norepinephrine (NE), and dopamine (DA) that were accompanied by increases in the urinary excretion of Epi, NE, DA. In addition, the KO mice presented an increase in urinary DA-to-l-3,4-dihydroxyphenylalanine (l-DOPA) ratios without changes in renal tubular aromatic-l-amino acid decarboxylase (AADC) activity. By contrast, the in vivo administration of RR (1.5 mg/kg sc) to KO mice was accompanied by significant decreases in plasma levels of Epi, DA, and l-DOPA as well as in urinary excretion of Epi, DA, and DA-to-l-DOPA ratios notwithstanding the accompanied increase in renal AADC activity. In addition, the increase in renal DA output observed in renalase KO mice was accompanied by an increase in the expression of the L-type amino acid transporter like (LAT) 1 that is reversed by the administration of RR in these animals. These results suggest that the overexpression of LAT1 in the renal cortex of the renalase KO mice might contribute to the enhanced l-DOPA availability/uptake and consequently to the activation of the renal dopaminergic system in the presence of renalase deficiency.

Publisher

American Physiological Society

Subject

Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3