The tight junction protein claudin-3 shows conserved expression in the nephric duct and ureteric bud and promotes tubulogenesis in vitro

Author:

Haddad Nicholas1,Andalousi Jasmine El2,Khairallah Halim1,Yu Melissa2,Ryan Aimee K.2,Gupta Indra R.2

Affiliation:

1. Departments of 1Human Genetics and

2. Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada

Abstract

The claudin family of proteins is required for the formation of tight junctions that are contact points between epithelial cells. Although little is known of the cellular events by which epithelial cells of the ureteric bud form tubules and branch, tubule formation is critical for kidney development. We hypothesize that if claudin-3 (Cldn3) is expressed within tight junctions of the ureteric bud, this will affect ureteric bud cell shape and tubule formation. Using transmission electron microscopy, we identified tight junctions within epithelial cells of the ureteric bud. Whole mount in situ hybridization and immunoassays were performed in the mouse and chick and demonstrated that Cldn3 transcript and protein were expressed in the nephric duct, the ureteric bud, and its derivatives at critical time points during tubule formation and branching. Mouse inner medullary collecting duct cells (mIMCD-3) form tubules when seeded in a type I collagen matrix and were found to coexpress CLDN3 and the tight junction marker zonula occludens-1 in the cell membrane. When these cells were stably transfected with Cldn3 fused to the enhanced green fluorescent protein reporter, multiple clones showed a significant increase in tubule formation compared with controls ( P < 0.05) due in part to an increase in cell proliferation ( P < 0.01). Cldn3 may therefore promote tubule formation and expansion of the ureteric bud epithelium.

Publisher

American Physiological Society

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3