High urea and creatinine concentrations and urea transporter B in mammalian urinary tract tissues

Author:

Spector David A.,Yang Qing,Wade James B.

Abstract

Although the mammalian urinary tract is generally held to be solely a transit and storage vehicle for urine made by the kidney, in vivo data suggest reabsorption of urea and other urine constituents across urinary tract epithelia. To determine whether urinary tract tissue concentrations are increased as a result of such reabsorption, we measured urea nitrogen and creatinine concentrations and determined whether urea transporter B (UT-B) was present in bladder, ureter, and other tissues from dogs and rats. Mean urea nitrogen and creatinine concentrations in dogs and rats were three- to sevenfold higher in urinary tract tissues than in serum and were comparable to those in renal cortex. In water-restricted or water-loaded rats, urea nitrogen concentrations in bladder tissues fell inversely with the state of hydration, were proportional to urine urea nitrogen concentrations, and were greater than the corresponding serum urea nitrogen concentration in every animal. Immunoblots of rat and dog urinary tract tissues demonstrated the presence of UT-B in homogenates of bladder and ureter, and immunocytochemical analysis localized UT-B to epithelial cell membranes. These findings are consistent with the notion that urea and creatinine are continuously reabsorbed from the urine across the urothelium, urea in part via UT-B, and that urine is thus altered in its passage through the urinary tract. Urea reabsorption across urinary tract epithelia may be important during conditions requiring nitrogen conservation and may contribute to pathophysiological states characterized by high blood urea nitrogen, such as prerenal azotemia and obstructive uropathy.

Publisher

American Physiological Society

Subject

Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3