Author:
Su Xiaoling,Changolkar Arun,Chacko Samuel,Moreland Robert S.
Abstract
The effect of diabetes mellitus on the regulation of urinary bladder smooth muscle contraction was studied. Diabetes was induced in the rabbit by alloxan injection followed by 16 wk of housing. The bladder was harvested and strips of wall devoid of both mucosa and serosa were examined. Intact strips of bladder smooth muscle from diabetic animals produced less stress in response to membrane depolarization than muscle from control animals; sensitivity to KCl was not changed. Carbachol responses were similar in muscle strips from the two animal groups. Basal myosin light chain (MLC) phosphorylation levels were significantly elevated in response to most stimuli in muscle strips from diabetic animals, although levels of stress were either unchanged or lower. α-Toxin-permeabilized strips that allow for control of the intracellular environment while maintaining excitation-contraction coupling showed increased levels of MLC phosphorylation but decreased sensitivity to activator Ca2+in smooth muscle from diabetic animals. MLC phosphatase contents were similar in smooth muscle from the two animal groups; however, MLC phosphatase activity was greater in muscle from control compared with diabetic animals. These results suggest that diabetes mellitus uncouples basal MLC phosphorylation from force in the bladder smooth muscle cell.
Publisher
American Physiological Society
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献