Dissociation of acid-base effects on substrate accumulation and on delta pH in dog mitochondria

Author:

Simpson D. P.1

Affiliation:

1. Department of Medicine, University of Wisconsin Center for Health Sciences, Madison 53792.

Abstract

The relationship between the pH gradient (delta pH) and substrate accumulation was examined in mitochondria from dog renal cortex. Mitochondria were incubated in media containing bicarbonate or nonbicarbonate buffers. Mitochondrial delta pH was at equilibrium after 2 min incubation but citrate accumulation in the matrix space was still increasing. With nonbicarbonate buffer in rotenone-inhibited mitochondria, citrate and alpha-ketoglutarate concentrations in the matrix did not vary between pH 7.5 and 7.1; delta pH decreased from 0.62 to 0.52 as medium pH fell. With decreasing bicarbonate concentration (from 40 to 10 mM) and constant CO2 tension, concentrations of citrate, alpha-ketoglutarate, malate, glutamate, glutamine, and formate increased; pyruvate accumulation was lower at 10 than at 25 mM bicarbonate; delta pH remained constant. When respiratory changes were produced, concentrations of citrate, alpha-ketoglutarate, malate, and glutamate increased as medium pH fell and CO2 tension increased; accumulation of pyruvate, glutamine, and formate was unaffected. delta pH fell from 0.48 to 0.39 as CO2 tension rose from 3 to 12%. In uninhibited mitochondria, 14CO2 formation from labeled citrate was greater with 10 than with 40 mM bicarbonate; this difference as well as the accumulation of citrate in the matrix was blocked by inhibition of the tricarboxylate carrier with 1,2,3-benzenetricarboxylate. These results dissociate effects of acid-base change on mitochondrial substrate accumulation from changes in delta pH. They suggest a direct, bicarbonate-dependent influence of pH on multiple mitochondrial substrate carriers. This phenomenon may play an important role in metabolic regulation in renal cortex.

Publisher

American Physiological Society

Subject

Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3