Parenterial iron sucrose-induced renal preconditioning: differential ferritin heavy and light chain expression in plasma, urine, and internal organs

Author:

Johnson Ali C.1,Gooley Ted1,Guillem Alvaro2,Keyser Jeff2,Rasmussen Henrik2,Singh Bhupinder3,Zager Richard A.14

Affiliation:

1. The Fred Hutchinson Cancer Research Center, Seattle, Washington

2. Renibus Therapeutics, Dallas, Texas

3. University of California, Irvine, California

4. University of Washington, Seattle, Washington

Abstract

Experimental data suggest that iron sucrose (FeS) injection, used either alone or in combination with other prooxidants, can induce “renal preconditioning,” in part by upregulating cytoprotective ferritin levels. However, the rapidity, degree, composition (heavy vs. light chain), and renal ferritin changes after FeS administration in humans remain to be defined. To address these issues, healthy human volunteers ( n = 9) and patients with stage 3–4 chronic kidney disease( n = 9) were injected once with FeS (120, 240, or 360 mg). Plasma ferritin was measured from 0 to 8 days postinjection as an overall index of ferritin generation. Urinary ferritin served as a “biomarker” of renal ferritin production. FeS induced rapid (≤2 h), dose-dependent, plasma ferritin increases in all study participants, peaking at approximately three to five times baseline within 24–48 h. Significant urinary ferritin increases (~3 times), without dose-dependent increases in albuminuria, neutrophil gelatinase-associated lipocalin, or N-acetyl-β-d-glucosaminidase excretion, were observed. Western blot analysis with ferritin heavy chain (Fhc)- and light chain (Flc)-specific antibodies demonstrated that FeS raised plasma Flc but not Fhc levels. Conversely, FeS increased both Fhc and Flc in urine. To assess sites of FeS-induced ferritin generation, organs from FeS-treated mice were probed for Fhc, Flc, and their mRNAs. FeS predominantly raised hepatic Flc. Conversely, marked Fhc and Flc elevations developed in the kidney and spleen. No cardiopulmonary ferritin increases occurred. Ferritin mRNAs remained unchanged throughout, implying posttranscriptional ferritin production. We conclude that FeS induces rapid, dramatic, and differential Fhc and Flc upregulation in organs. Renal Fhc and Flc increases, in the absence of nephrotoxicity, suggest potential FeS utility as a clinical renal “preconditioning” agent.

Funder

Renibus Therapeutics

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3