Acute decrease in renal microvascular Po2 during acute normovolemic hemodilution

Author:

Johannes Tanja,Mik Egbert G.,Nohé Boris,Unertl Klaus E.,Ince Can

Abstract

Large differences in the tolerance of organ systems to conditions of decreased O2 delivery such as hemodilution exist. The kidney receives ∼25% of the cardiac output and O2 delivery is in excess of the oxygen demand under normal circumstances. In a rat model of acute normovolemic hemodilution (ANH), we studied the effect of reduced hematocrit on renal regional and microvascular oxygenation. Experiments were performed in 12 anesthetized male Wistar rats. Six animals underwent four steps of ANH (hematocrit 25, 15, 10, and <10%). Six animals served as time-matched controls. Systemic and renal hemodynamic and oxygenation parameters were monitored. Renal cortical (c) and outer medullary (m) microvascular Po2 (μPo2) and the renal venous Po2 (PrvO2) were continuously measured by oxygen-dependent quenching of phosphorescence. Despite a significant increase in renal blood flow in the first two steps of ANH, cμPo2 and mμPo2 dropped immediately. From the first step onward oxygen consumption (V̇o2ren) became dependent on oxygen delivery (Do2ren). With a progressive decrease in hematocrit, a significant correlation between μPo2 and V̇o2ren could be observed, as well as a Po2 gap between μPo2 and PrvO2. Furthermore, there was a high correlation between V̇o2ren and RBF over a wide range of flows. In conclusion, the oxygen supply to the renal tissue is becoming critical already in an early stage of ANH due to the combination of increased V̇o2ren, decreased Do2ren, and intrarenal O2 shunt. This has clinical relevance as recent publications reporting that hemodilution during surgery forms a risk factor for postoperative renal dysfunction.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3