Urine concentrating defect in prostaglandin EP1-deficient mice

Author:

Kennedy Chris R. J.,Xiong Huaqi,Rahal Sherine,Vanderluit Jacqueline,Slack Ruth S.,Zhang Yahua,Guan Youfei,Breyer Matthew D.,Hébert Richard L.

Abstract

We investigated the role of the prostaglandin E2(PGE2) EP1receptor in modulating urine concentration as it is expressed along the renal collecting duct where arginine-vasopressin (AVP) exerts its anti-diuretic activity, and in the paraventricular and supraoptic nuclei of the hypothalamus where AVP is synthesized. The urine osmolality of EP1-null mice (EP1−/−) failed to match levels achieved by wild-type (WT) counterparts upon water deprivation (WD) for 24 h. This difference was reflected by higher plasma osmolality in WD EP1−/−mice. Along the collecting duct, the induction and subapical to plasma membrane translocation of the aquaporin-2 water channel in WD EP1−/−mice appeared equivalent to that of WD WT mice as determined by quantitative RT-PCR and immunohistochemistry. However, medullary interstitial osmolalities dropped significantly in EP1−/−mice following WD. Furthermore, urinary AVP levels of WD EP1−/−mice were significantly lower than those of WD WT mice. This deficit could be traced back to a blunted induction of hypothalamic AVP mRNA expression in WD EP1−/−mice as determined by quantitative RT-PCR. Administration of the AVP mimetic [deamino-Cys1,d-Arg8]-vasopressin restored a significant proportion of the urine concentrating ability of WD EP1−/−mice. When mice were water loaded to suppress endogenous AVP production, urine osmolalities increased equally for WT and EP1−/−mice. These data suggest that PGE2modulates urine concentration by acting at EP1receptors, not in the collecting duct, but within the hypothalamus to promote AVP synthesis in response to acute WD.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3