Alterations in neurogenically mediated contractile responses of urinary bladder in rats with diabetes

Author:

Liu Guiming,Daneshgari Firouz

Abstract

Diabetic bladder dysfunction (DBD) is among the most common and bothersome complications of diabetes mellitus. Autonomic neuropathy has been counted as the cause of DBD. In the present study, we compared the alterations in the neurogenically mediated contractile responses of urinary bladder in rats with streptozocin-induced diabetes, 5% sucrose-induced diuresis, and age-matched controls. Male Sprague-Dawley rats were divided into three groups: 9-wk diabetic rats, diuretic rats, and age-matched controls. Micturition and morphometric characteristics were evaluated using metabolic cage and gross examination of the bladder. Bladder detrusor muscle strips were exposed to either periodic electrical field stimulation (EFS) or to EFS in the presence of atropine, α,β-methylene adrenasine 5′-triphosphate, or tetrodotoxin. The proportions of cholinergic, purinergic, and residual nonadrenergic-noncholinergic (NANC) components of contractile response were compared among the three groups of animals. Diabetes caused a significant reduction of body weight compared with diuresis and controls, although the bladders of diabetic and diuretic rats weighed more than the controls. Both diabetes and diuresis caused significant increase in fluid intake, urine output, and bladder size. Diabetes and diuresis caused similarly increased response to EFS and reduced response to cholinergic component compared with controls. However, the purinergic response was significantly smaller in diuretic bladder strips compared with controls but not in diabetic rats. A residual NANC of unknown origin increased significantly but differently in diabetics and diuretics compared with controls. In conclusion, neurogenically mediated bladder contraction is altered in the diabetic rat. Diabetic-related changes do not parallel diuretic-induced changes, indicating that the pathogenesis of DBD needs further exploration.

Publisher

American Physiological Society

Subject

Physiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3