Adenosine inhibits renin release from juxtaglomerular cells via an A1 receptor-TRPC-mediated pathway

Author:

Ortiz-Capisano M. Cecilia1,Atchison Douglas K.12,Harding Pamela1,Lasley Robert D.2,Beierwaltes William H.12

Affiliation:

1. Henry Ford Health System, Department of Internal Medicine, Hypertension and Vascular Research Division, Detroit, Michigan; and

2. Wayne State University, School of Medicine, Department of Physiology, Detroit, Michigan

Abstract

Renin is synthesized and released from juxtaglomerular (JG) cells. Adenosine inhibits renin release via an adenosine A1 receptor (A1R) calcium-mediated pathway. How this occurs is unknown. In cardiomyocytes, adenosine increases intracellular calcium via transient receptor potential canonical (TRPC) channels. We hypothesized that adenosine inhibits renin release via A1R activation, opening TRPC channels. However, higher concentrations of adenosine may stimulate renin release through A2R activation. Using primary cultures of isolated mouse JG cells, immunolabeling demonstrated renin and A1R in JG cells, but not A2R subtypes, although RT-PCR indicated the presence of mRNA of both A2AR and A2BR. Incubating JG cells with increasing concentrations of adenosine decreased renin release. Different concentrations of the adenosine receptor agonist N-ethylcarboxamide adenosine (NECA) did not change renin. Activating A1R with 0.5 μM N6-cyclohexyladenosine (CHA) decreased basal renin release from 0.22 ± 0.05 to 0.14 ± 0.03 μg of angiotensin I generated per milliliter of sample per hour of incubation (AngI/ml/mg prot) ( P < 0.03), and higher concentrations also inhibited renin. Reducing extracellular calcium with EGTA increased renin release (0.35 ± 0.08 μg AngI/ml/mg prot; P < 0.01), and blocked renin inhibition by CHA (0.28 ± 0.06 μg AngI/ml/mg prot; P < 0. 005 vs. CHA alone). The intracellular calcium chelator BAPTA-AM increased renin release by 55%, and blocked the inhibitory effect of CHA. Repeating these experiments in JG cells from A1R knockout mice using CHA or NECA demonstrated no effect on renin release. However, RT-PCR showed mRNA from TRPC isoforms 3 and 6 in isolated JG cells. Adding the TRPC blocker SKF-96365 reversed CHA-mediated inhibition of renin release. Thus A1R activation results in a calcium-dependent inhibition of renin release via TRPC-mediated calcium entry, but A2 receptors do not regulate renin release.

Publisher

American Physiological Society

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3