Lithium-induced NDI in rats is associated with loss of α-ENaC regulation by aldosterone in CCD

Author:

Nielsen Jakob,Kwon Tae-Hwan,Frøkiær Jørgen,Knepper Mark A.,Nielsen Søren

Abstract

Lithium-induced nephrogenic diabetes insipidus (Li-NDI) is associated with increased urinary sodium excretion and decreased responsiveness to aldosterone and vasopressin. Dysregulation of the epithelial sodium channel (ENaC) is thought to play an important role in renal sodium wasting. The effect of 7-day aldosterone and spironolactone treatment on regulation of ENaC in rat kidney cortex was investigated in rats with 3 wk of Li-NDI. Aldosterone treatment of rats with Li-NDI decreased fractional excretion of sodium (0.83 ± 0.02), whereas spironolactone did not change fractional excretion of sodium (1.10 ± 0.11) compared with rats treated with lithium alone (1.11 ± 0.05). Plasma lithium concentration was decreased by aldosterone (0.31 ± 0.03 mmol/l) but unchanged with spironolactone (0.84 ± 0.18 mmol/l) compared with rats treated with lithium alone (0.54 ± 0.04 mmol/l). Immunoblotting showed increased protein expression of α-ENaC, the 70-kDa form of γ-ENaC, and the Na-Cl cotransporter (NCC) in kidney cortex in aldosterone-treated rats, whereas spironolactone decreased α-ENaC and NCC compared with control rats treated with lithium alone. Immunohistochemistry confirmed increased expression of α-ENaC in the late distal convoluted tubule and connecting tubule and also revealed increased apical targeting of all three ENaC subunits (α, β, and γ) in aldosterone-treated rats compared with rats treated with lithium alone. Aldosterone did not, however, affect α-ENaC expression in the cortical collecting duct (CCD), which showed weak and dispersed labeling similar to that in rats treated with lithium alone. Spironolactone did not affect ENaC targeting compared with rats treated with lithium alone. This study shows a segment specific lack of aldosterone-mediated α-ENaC regulation in the CCD affecting both α-ENaC protein expression and trafficking, which may explain the increased sodium wasting associated with chronic lithium treatment.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3