Hypotonicity and cell volume regulation in shark rectal gland: role of organic osmolytes and F-actin

Author:

Ziyadeh F. N.1,Mills J. W.1,Kleinzeller A.1

Affiliation:

1. Department of Medicine, University of Pennsylvania, Philadelphia19104.

Abstract

Hypotonic stress (reduction of external tonicity from approximately 900 mosM and 295 mM NaCl to approximately 600 mosM and 135 mM NaCl) produced a relatively slow regulatory volume decrease (RVD) in dogfish shark (Squalus acanthias) rectal gland cells. During the 5-h experiment, cell K+ content remained unchanged; cell content of Na+ and Cl- dropped in the initial swelling phase by some 50% (reflecting the corresponding reduction in medium NaCl), and then remained unchanged during volume recovery phase. Also, cellular fluxes of 86Rb+ and urea were not affected by hypotonic stress. However, hypotonicity enhanced 10- to 20-fold the efflux of organic cell osmolytes taurine, betaine, and trimethyloxamine, and this accounted for the loss of osmotically obliged water during RVD. Enhancement of osmolyte efflux by hypotonic stress was abolished by readjusting the low-Na+ saline to isotonicity (approximately 900 mosM) with innocuous cations (choline+, Li+, or N-methylglucamine+). The results suggest that reduction of medium tonicity may be the determinant for the RVD response to hypotonic stress. The above properties of the observed RVD were also displayed when studying changes on cell F-actin at the basolateral cell face; hypotonic stress (medium with 135 mM NaCl) produced a rapid disappearance of fluorescence related to this cytoskeletal component, whereas no such changes were seen in low-Na+ salines made isotonic with choline or N-methylglucamine chloride nor in a saline made hyposmolar by omitting urea. Hence, hypotonicity is required to affect F-actin organization (depolymerization?). These changes of F-actin fluorescence are transient; they were completed within 5-10 min of hypotonic stress, and afterwards a gradual reconstitution of cell F-actin organization was seen. The above observations are consistent with the assumption that, in shark rectal gland cells, transient loss of cytoskeleton (F-actin) organization at the basolateral cell face, induced by hypotonicity, brings about a selective efflux of organic osmolytes, thus producing the observed RVD.

Publisher

American Physiological Society

Subject

Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3