Direct fibrogenic effects of aldosterone on normotensive kidney: an effect modified by 11β-HSD activity

Author:

Brem Andrew S.1,Morris David J.2,Ge Yan1,Dworkin Lance1,Tolbert Evelyn1,Gong Rujun1

Affiliation:

1. Division of Kidney Diseases and Hypertension, Rhode Island Hospital,

2. Department of Laboratory Medicine, Miriam Hospital, Brown Medical School, Providence, Rhode Island

Abstract

Aldosterone (Aldo) can be a profibrotic factor in cardiovascular and renal tissues. This study tests the hypothesis that prolonged Aldo exposure is able to directly induce fibrotic changes in the kidney of a normal nonhypertensive animal. Immortalized rat proximal tubule cells (IRPTC) containing 11β-hydroxysteroid dehydrogenase (11β-HSD1) but no mineralocorticoid receptors (MR) and mouse inner medullary collecting duct cells (IMCD) containing 11β-HSD2 and MR were examined. IRPTC exposed to Aldo or corticosterone (10 nM) for 48 h demonstrated no change in collagen production as assessed by Sirius red staining. In contrast, IMCD treated with Aldo exhibited a marked increase in the expression of collagen, fibronectin, and connective tissue growth factor (CTGF), whereas corticosterone alone had no effect. The Aldo-induced overexperession of collagen, fibronectin, and CTGF was substantially attenuated by the MR antagonist RU-318 and by the 11β-HSD end product 11-dehydrocorticosterone, but not by the glucocorticoid receptor antagonist RU-486. In vivo, early fibrotic changes with elevated collagen, fibronectin, and CTGF expression were observed in kidneys isolated from normotensive adrenalectomized mice receiving a continuous infusion of Aldo (8 μg·kg−1·day−1) for 1 wk. These changes were not present in corticosterone-treated mice. Aldo-induced changes were attenuated in adrenally intact mice and in mice treated with RU-318 or 11-dehydrocorticosterone. Thus, extended Aldo exposure produces fibrotic changes in cells containing MR and in normal kidneys. MR antagonists and the end products of 11β-HSD attenuate these fibrogenic effects.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3