Mutation of the Na+-K+-2Cl−cotransporter NKCC2 in mice is associated with severe polyuria and a urea-selective concentrating defect without hyperreninemia

Author:

Kemter Elisabeth12,Rathkolb Birgit1,Bankir Lise3,Schrewe Anja45,Hans Wolfgang5,Landbrecht Christina1,Klaften Matthias5,Ivandic Boris4,Fuchs Helmut5,Gailus-Durner Valérie5,Hrabé de Angelis Martin5,Wolf Eckhard1,Wanke Ruediger2,Aigner Bernhard1

Affiliation:

1. Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and

2. Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich;

3. INSERM Unité 872, Centre de Recherche des Cordeliers, Paris, France;

4. Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg; and

5. Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany

Abstract

The bumetanide-sensitive Na+-K+-2Clcotransporter NKCC2, located in the thick ascending limb of Henle's loop, plays a critical role in the kidney's ability to concentrate urine. In humans, loss-of-function mutations of the solute carrier family 12 member 1 gene ( SLC12A1), coding for NKCC2, cause type I Bartter syndrome, which is characterized by prenatal onset of a severe polyuria, salt-wasting tubulopathy, and hyperreninemia. In this study, we describe a novel chemically induced, recessive mutant mouse line termed Slc12a1I299Fexhibiting late-onset manifestation of type I Bartter syndrome. Homozygous mutant mice are viable and exhibit severe polyuria, metabolic alkalosis, marked increase in plasma urea but close to normal creatininemia, hypermagnesemia, hyperprostaglandinuria, hypotension,, and osteopenia. Fractional excretion of urea is markedly decreased. In addition, calcium and magnesium excretions are more than doubled compared with wild-type mice, while uric acid excretion is twofold lower. In contrast to hyperreninemia present in human disease, plasma renin concentration in homozygotes is not increased. The polyuria observed in homozygotes may be due to the combination of two additive factors, a decrease in activity of mutant NKCC2 and an increase in medullary blood flow, due to prostaglandin-induced vasodilation, that impairs countercurrent exchange of urea in the medulla. In conclusion, this novel viable mouse line with a missense Slc12a1 mutation exhibits most of the features of type I Bartter syndrome and may represent a new model for the study of this human disease.

Publisher

American Physiological Society

Subject

Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3