Affiliation:
1. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
Abstract
We recently reported that NADH oxidase is one of the major enzymes responsible for superoxide (O[Formula: see text]·) production in the rat kidney. However, the functional significance of NADH oxidase-mediated O[Formula: see text]· production and the mechanisms regulating this enzyme activity are poorly understood. Using fluorescence microscopic imaging analysis, the present study demonstrated that thick ascending limbs of Henle's loop (TALHs) exhibited red fluorescence when incubated with dihydroethidium (DHE), suggesting that O[Formula: see text]· is produced in this tubular segment. Compared with other nephron segments, TALHs from both renal cortex and medulla showed the highest fluorescence intensity. By incubating cortical TALHs (cTALHs) with the substrates of NADH oxidase, xanthine oxidase, nitric oxide synthase, arachidonic acid-metabolizing enzymes, and intramitochondrial oxidases, NADH oxidase was found to be one of the most important enzymes for O[Formula: see text]· production in this tubular segment. The NADH oxidase inhibitor diphenyleneiodonium (DPI; 100 μM) completely blocked NADH-induced O[Formula: see text]· production in cTALHs. Exposure of cTALHs to low Po2(5–10 Torr) significantly increased O[Formula: see text]· production regardless of the absence or presence of NADH. Furthermore, angiotensin II (100 nM) increased NADH oxidase activity by 32%, which was completely blocked by DPI. These results suggest that NADH oxidase is a major enzyme responsible for O[Formula: see text]· production in the TALHs and that the production of O[Formula: see text]· via NADH oxidase may be regulated by renal tissue oxygenation and circulating hormones.
Publisher
American Physiological Society
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献