Prospect of a stanniocalcin endocrine/paracrine system in mammals

Author:

Ishibashi Kenichi1,Imai Masashi1

Affiliation:

1. Department of Pharmacology, Jichi Medical School, Tochigi 329-0498, Japan

Abstract

Stanniocalcin (STC) is a calcium- and phosphate-regulating hormone produced in bony fish by the corpuscles of Stannius, which are located close to the kidney. It is a major antihypercalcemic hormone in fish. As the corpuscles of Stannius are absent, and antihypercalcemic hormones are basically not necessary, in mammals, the discovery of a mammalian homolog, STC1, was surprising and intriguing. STC1 displays a relatively high amino acid sequence identity (∼50%) with fish STC. In contrast to fish STC, STC1 is expressed in many tissues, including kidney. More recently, a human gene encoding the second stanniocalcin-like protein, STC2, was identified. STC2 has a lower identity (∼35%) with STC1 and fish STC. Similar to STC1, STC2 is also expressed in a variety of tissues. Research into the functions of STCs in mammals is still at an early stage, and the ultimate physiological and pathological roles of STCs have not yet been established. A few studies indicate that STC1, similar to fish STC, stimulates phosphate absorption in the kidney and intestine, but the function of STC2 is still unknown. However, several interesting findings have been reported on their cellular localization, gene structure, and expression in different physiological and pathological conditions, which will be clues in elucidating the functions of STCs in mammals. STC1 expression is enhanced by hypertonicity in a kidney cell line or by ischemic injuries and neural differentiation in the brain. STC1 expression in the ovary is also enhanced during pregnancy and lactation. Calcitriol upregulates STC1 and downregulates STC2 expression in the kidney. Interestingly, STC1 and STC2 are expressed in many tumor cell lines, and the expression of STC2 is enhanced by estradiol in breast cancer cells. STC2 is also expressed in pancreatic islets. These results suggest that the biological repertoires of STCs in mammals will be considerably larger than in fish and may not be limited to mineral metabolism. This brief review describes recent progress in mammalian STC research.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3